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Abstract The conceptually non-trivial problem of relating the notion of a compound phys-
ical system and the mathematical descriptions of its constituent parts is dramatically illus-
trated in standard quantum physics by the use of the Hilbert tensor product of the spaces
representing the subsystems, instead of the more familiar cartesian product, as it is the case
for classical physical systems. Aspects of the general structure of this relationship can be
explained by endowing suitable categories that arise in the mathematical descriptions of
classical systems and of quantum systems with their natural monoidal structures, and con-
structing a monoidal functor, relating the monoidal structures of the domain and codomain
categories in a coherent way. To highlight some of the structural aspects involved, I will
confine myself in this paper to the simple case of finite sets or finite-dimensional Hilbert
spaces, on which finite groups act.

1 Introduction

It is a fundamental property of at least some approaches in the Foundations of Physics com-
munity, notably the so-called Geneva approach, that the properties of physical systems are
described externally by way of their relationship with other systems—such as measurement
devices used to probe the system under investigation—rather than imposing some putative,
a priori structure on the mathematical description ab initio.1 Philosophically speaking, an
important consequence is that a system is typically described by some sort of “top–bottom”
approach, since its properties are (at least initially) conceived as originating from the poten-
tial interaction of the system as a whole with various experimental contexts. It is conceivable
that such an approach may be at odds with the opposite, more reductionistic but conceptually

1An important additional advantage, at least from a conceptual point of view, and one that is not often empha-
sized, is that so-called superselection rules appear ab initio in the framework, and don’t need to be introduced
ad hoc to save the phenomena.
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straightforward approach of regarding, and trying to describe, a collection of systems as one
compound system, from the knowledge of its conceived constituents in isolation. Indeed,
the fundamental structural results of Aerts [2] on separated physical systems, in particu-
lar quantum systems, makes this incompatibility quite clear. For classical physical systems,
both approaches seem equivalent: The information about the parts of the system is suffi-
cient to reconstruct at least the state space associated with the classical system, often as the
cartesian product �1 × �2 of the state spaces attributed to the two subsystems, sometimes
as an appropriate subset of this, as one may expect from classical logical arguments. For
quantum systems, this appears to be no longer the case. It is in this light that we may have to
understand the appearance of the Hilbert tensor product ⊗ in the description of composite
quantum systems, rather than a categorical product, in so far as a general quantum system
can be described by a complex Hilbert space.

One of the big conceptual advantages of the Geneva Approach (see e.g. [2, 10, 12, 13]),
which in a way liberates one from many interpretational issues, comes from the fact that the
primitive elements of this formalism are introduced in an operationally well-motivated way.
Without going into details, the collection of properties attributed to a physical system ob-
tains the structure of a complete atomistic ortholattice. For classical systems, this structure
specializes to the collection P(�) of all subsets of a set �, representing the possible pure
states attributed to the system, and the standard description of a pure quantum system in a
complex Hilbert space H yields the irreducible orthomodular property lattice of closed sub-
spaces L(H) of the Hilbert space. Conversely, it is a milestone in research in the Foundations
of Physics that similar considerations force every such property lattice to be representable
as a collection of ortholattices {Lω(Hω) | ω ∈ �} associated with orthomodular spaces un-
der fairly general conditions [11], where the superselection rules are a manifestation of the
existence of classical properties (and this notion is well-defined in the formalism). An ortho-
modular space comes quite close to a standard Hilbert space, but the nature of the underlying
division ring is left undetermined, and additional arguments are necessary to make the tran-
sition (see [7], for instance). In addition, we have already indicated that the same structural
ingredients, applied to classical physical systems, lead to the structure of the power set of
some underlying “state space”, the only “structure” of which, at least at this level of the
description process, is that of a set. Also here, one needs additional arguments to recover the
familiar state spaces from Newtonian or Hamiltonian physics.

The explicit introduction of observables—reflecting the physical desideratum of adding
more empiric information in the fundamental framework—together with appropriate sym-
metry constraints to which these entities may be subject, seems to circumvent the problem
associated with viewing a system as compound in some way, since we don’t have to take
into account the putative a priori existence of proper constituents of the global system. In-
deed, one can argue that this is one of the conceptual disadvantages of the Aerts–Daubechies
approach [3], where one tries to formulate ab initio a notion of subsystem. Observables are
linked to particular experimental devices, and relate the properties of these devices to the
properties of the physical system under investigation. Now some physical systems are nat-
urally investigated by a parallel array of such devices, and the mathematical description of
the state space associated with the composite, classical device uses the cartesian product of
the state spaces attributed to the individual set-ups. This appears to be one of the reasons
why Abramsky & Coecke [1] are developing a categorical calculus for which the primitive
elements are construed as arising from the general experimental possibility of using both
serial and parallel operations, subject to appropriate typing constraints, on general physi-
cal systems. Thus, the notion of “compoundness” obtains a more operational flavor, rather
than an invariant attributed ab initio to the system under investigation. A second reason,
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of course, is that adding more (empiric) structure also leads to important reductions in the
possible structure of admissible state spaces, as we shall see.

To highlight some of the structural aspects involved, and for reasons of space, I will
confine myself in this paper to the simple case of finite sets or finite-dimensional Hilbert
spaces, on which finite groups act,2 referring more general results associated with the action
of locally compact Hausdorff groups on more general quantum-like structures to future pub-
lications, in the spirit of [8]. Indeed, the general representation theory has been neglected
somewhat in the quantum structures community, although there are notable exceptions (for
instance [6]). This has the considerable advantage that we will not be distracted by all kinds
of topological and measure-theoretic details, and so we can highlight some of the essential
structural aspects, and illustrate how categorical methods can guide our thinking. On the
other hand, not all results will remain valid, but this is bound to throw additional light on the
general case.

2 Abstract Group Theory

The formalism of category theory is the mathematical language par excellence to investigate
structural relationships of all sorts; the reader is referred to the standard literature [4, 9].
Specifically, we claim that many properties of group actions and group representations can
be conveniently formulated in a categorical context. Recall that the algebraic identities that
make up the definition of a group can be expressed as a collection of commutative diagrams
in the category Set, that also make sense in other categories, for instance Top. In detail,
a group object or internal group in a cartesian category C is given by a C-object G and
C-arrows u : 1 → G, m : G × G → G and ζ : G → G, with a specified product for each
pair of objects and a specified terminal object 1, such that the conditions expressed in the
following diagrams are satisfied.3

G × (G × G)
G×m

α

G × G

m(G × G) × G

m×G

G × G
m

G

,

2For reasons of illumination rather than for support.
3Notice that the conditions in the first two diagrams express the notion of an internal monoid, and these
conditions also make sense in more general monoidal categories. The third diagram, on the other hand,
requires the existence of a diagonal δ : G → G × G, and this is not generally the case in the more general
setting of monoidal categories.
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1 × G
u×G

λ

G × G

m

G × 1
G×u

ρ

G

,

G
δ

!

G × G
G×ζ

G × G

m

1
u

G

,

where α, λ and ρ are the usual (natural) isomorphisms that come with a categorical prod-

uct. Not surprisingly, there is a corresponding notion of group homomorphism in C. Given

two internal groups G and G′, this is a C-arrow h : G → G′ that satisfies the additional

requirement

G × G
m

h×h

G

h

G′ × G′
m′

G′

.

In addition, the idea of a group acting on an object can be expressed in a purely diagrammatic

way. Explicitly, given a group object G and an object X in C, we have the diagrams

G × (G × X)
G×a

α

G × X

a(G × G) × X

m×X

G × X
a

X

,

1 × X
u×X

λ

G × X

a

X

(1)

with a : G × X → X expressing the action. Finally, the notion of a G-equivariant mapping

can also be defined diagrammatically:

G × X
a

G×f

X

f

G × X′
a′

X′

. (2)
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Consequently, given a group object in a finitely complete category C, one has a functor

PG : C −→ C :
X

f

G × X

G×f

X′ G × X′

. (3)

This functor turns out to be part of a monad (PG,η,μ). Explicitly, the natural transformation
η : 1C ⇒ PG is defined by commutativity of

X

f

1 × X
λ u×X

1×f

G × X

G×f

X′ 1 × X′
λ u×X′

G × X′

and the natural transformation μ : P 2
G ⇒ PG by commutativity of

G × (G × X)
α

G×(G×f )

(G × G) × X
m×X

(G×G)×f

G × X

G×f

G × (G × X′)
α

(G × G) × X′
m×X′

G × X′

the monadic conditions reducing to

G × (G × (G × X))
G×μX

μG×X

G × (G × X)

μX

G × (G × X)
μX

G × X

,

G × X
ηG×X

G × (G × X)

μX

G × X
G×ηX

G × X

(4)

and the reader can verify that these diagrams commute, because G is an internal group in
C, and the explicit choice of a categorical product and terminal object induce a monoidal
structure on C. We can summarize all this in
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Proposition 1 If C is a cartesian category and G is an internal C-group, the triple
(PG,η,μ) is a monad on C.

An object in the Eilenberg–Moore category associated with the monadic functor PG can
be seen as an action of G on a C-object. More precisely, a PG-algebra is a pair (X,a),
with a : G × X → X, that satisfies exactly the conditions expressed in (1). A morphism of
algebras (X,a) → (X′,a′) is a C-arrow that satisfies the condition of G-equivariance (2).
This category is then isomorphic to the category Act(G,C), with objects C-arrows G ×
X → X that satisfy the previous requirements defining an action, and arrows G-equivariant
C-arrows.

This procedure works well for monoidal categories for which G can be conceived as an
internal group. At first sight, it does not work for monoidal categories such as FinHilb

C
,

consisting of finite-dimensional complex Hilbert spaces and linear operators. More about
this later, but first I need some additional stuff.

3 Classical Physical Systems

Before I proceed, let us have a cursory look at some of the mathematical consequences for
the description of a classical physical system when a group is known to act on its state space.
Here are, in my opinion, two important results, at least at our level of the presentation.

Proposition 2 If a group G acts transitively on a set X, then there is a G-equivariant
bijection

X ∼= G/H (5)

for some subgroup H ≤ G, where H = stab(x0) for some x0 ∈ X.

This representation is essentially independent of x0.

Proposition 3 Suppose that G acts transitively on X. If there exists a G-equivariant func-
tion f : X → G/H , then the structure of the G-action G×X → X is completely determined
by the structure of an H -action H × S → S, where one can take S := f −1(e), and H ≤ G.
There exists an equivalence relation ∼H induced by H such that

X ∼= G ×H S := G × S/ ∼H (6)

in Act(G,Set), and G acts on the set on the right by left translation:

(g, [a, s]) 	→ [ga, s]. (7)

The first result is well-known, the second may need some clarification. Generally speak-
ing, this result is a manifestation of the existence of a system of imprimitivity relative
to Set. Specifically, the well-known duality between the categories Set of sets and func-
tions, and caBA of complete atomic Boolean algebras and complete Boolean morphisms,
lifts to a duality between the corresponding categories Act(G,Set) and Act(G, caBA). The
G-equivariant function X → G/H corresponds with a G-equivariant complete Boolean
morphism

P(G/H) → P(X), (8)



Int J Theor Phys (2008) 47: 149–167 155

hence can be interpreted as a G-covariant observable for classical orthomodular lattices
[12, 13].

Because, at least in the simple case of Set, each action can be seen as an ordinary functor
from the group, interpreted as a one-object category, to Set, limits and colimits can be calcu-
lated pointwise; in particular, Act(G,Set) has products and coproducts. Specifically, given
G-actions G × A → A and G × B → B , we have a G-action on A × B , defined as follows:

G × (A × B) → A × B : (g, (a, b)) 	→ (g · a,g · b). (9)

Similarly, one can verify that G acts on the disjoint union A 
 B , via

G × (A 
 B) → A 
 B : (g, (x, i)) 	→ (g · x, i), (10)

where i ∈ {1,2}. One verifies easily that these prescriptions make the associated projections
and coprojections G-equivariant.

4 From Classical Actions to Unitary Representations

So far, we have seen that the category Act(G,FinSet) is finitely complete and cocomplete,
and corresponds with the Eilenberg–Moore category associated with the functor PG. We are
interested in the relation between this category and the category Rep(G,FinHilb

C
) of uni-

tary representations of G on finite-dimensional complex Hilbert spaces and G-intertwining
linear transformations, and in particular in the relation between various natural monoidal
structures that exist in the underlying categories FinSet and FinHilb

C
: products and coprod-

ucts in FinSet, and biproduct and tensorial structures in FinHilb
C

. The physical motivation
to do so comes from the fact that composite classical physical systems are usually described
by a categorical product, the state of the compound system being completely specified when
we know the states of the parts, whereas for quantum systems that are conceived as compos-
ite, one employs the Hilbert tensor product. Consequently, I will consider both FinSet and
FinHilb

C
as (symmetric) monoidal categories, where the monoidal structures are specified

by the cartesian product × and the Hilbert tensor product ⊗, respectively. The fact that these
two monoidal structures are intimately and coherently related, is made explicit by the exis-
tence of a monoidal functor between these two categories. In later work, I will try to extend
these results to the physically more interesting case of a (second countable) locally compact
Hausdorff group or Lie group acting on various sorts of objects.

Given any finite set X, with cardinality n < +∞, one can associate with X the
n-dimensional vector space C

X of complex-valued functions defined on X.4 In fact, C
X

can be taylored into a complex Hilbert space, by defining an inner product

〈−,−〉 : C
X × C

X → C : (ϕ,ψ) 	→
∑

x∈X

ϕ(x)∗ψ(x), (11)

where (−)∗ denotes complex conjugation. If G acts on X, there is a natural associated action
of G on C

X:

U : G × C
X → C

X : (g,ψ) 	→ U(g,ψ) := ψ ◦ g−1, (12)

4A parallel exposition seems to be possible for real Hilbert spaces, at least to the amount where we can avoid
any results that apply only to C, such as Schur’s lemma.
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where we have indulged in some abuse of notation, using the fact that g can be seen as a
bijection on X. In fact, each linear mapping

Ug : C
X → C

X : ψ 	→ U(g,ψ) (13)

is easily seen to be unitary. Specifically, we have

〈Ug(ϕ),Ug(ψ)〉 =
∑

x∈X

(Ug(ϕ))(x)∗ (Ug(ψ))(x)

=
∑

x∈X

ϕ(g−1 · x)∗ ψ(g−1 · x)

=
∑

y∈X

ϕ(y)∗ψ(y) = 〈ϕ,ψ〉.

It makes sense to try to extend this association of objects into a full-blown functorial rela-
tionship between the categories FinSet and FinHilb

C
. Given a function f : X → Y , there is

a canonical correspondence between the vector spaces C
Y and C

X , given by the assignment

C
f := f ∗ : C

Y → C
X : ψ 	→ ψ ◦ f (14)

and Cf is obviously a linear operator. It is quite clear that this procedure defines a con-
travariant functor, say Q. I assert that this functor lifts to a functor between the correspond-
ing categories Act(G,FinSet) and Rep(G,FinHilb

C
). For if f is G-equivariant, denoting

the actions of G on C
X and C

Y by UX and UY respectively, we have, given ψ ∈ C
Y and

x ∈ X:

(f ∗(UY
g (ψ)))(x) = (UY

g (ψ))(f (x))

= ψ(f (g−1 · x))

= (f ∗(ψ))(g−1 · x)

= (UX
g (f ∗(ψ)))(x)

and we infer that f ∗ ◦ UY
g = UX

g ◦ f ∗ for all g ∈ G. Summarizing, we have constructed a
contravariant functor

QG : Act(G,FinSet) −→ Rep(G,FinHilb
C
) :

X

f

C
X

Y C
Y

Cf .

(15)

The unitary representations in the image of Q are never irreducible in the finite case. Indeed,
the one-dimensional subspace spanned by the vector

∑
x∈X χx ∈ C

X , with χx the character-
istic function of {x}, is always invariant. Note, however, that this argument breaks down in
the infinite-dimensional case.

It is my purpose to extend QG into a monoidal functor, relative to the specified product
monoidal structure on Act(G,FinSet) and the tensor product on Rep(G,FinHilb

C
). First,
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however, let us have a look at what happens when G acts non-transitively on X; or, in other
words: What happens with coproducts? Given unitary representations UX and UY on C

X

and C
Y respectively, we have to define an appropriate unitary representation on the direct

sum. Of course, we take

U : G × (CX ⊕ C
Y ) → C

X ⊕ C
Y : (g, (f1, f2)) 	→ (UX

g f1,U
Y
g f2). (16)

Theorem 1 If X and Y are two finite G-sets, then

C
X

∐
Y ∼= C

X ⊕ C
Y (17)

where the isomorphism lives in the category Rep(G,FinHilb
C
).

Proof We have to find an intertwining linear bijection between the vector spaces C
X

∐
Y and

C
X ⊕ C

Y . I assert that the linear bijection

A : C
X

∐
Y → C

X ⊕ C
Y : f 	→ (f ◦ coprX,f ◦ coprY )

will do. For let g ∈ G, then

Ug(Af ) = Ug(f ◦ coprX,f ◦ coprY )

= (UX
g (f ◦ coprX),UY

g (f ◦ coprY ))

= (f ◦ coprX ◦ g−1, f ◦ coprY ◦ g−1),

A(Vgf ) = ((Vgf ) ◦ coprX, (Vgf ) ◦ coprY )

= (f ◦ g−1 ◦ coprX,f ◦ g−1 ◦ coprY )

with slight abuse of notation, hence the assertion follows. �

Next, we have to find out what happens with products in Act(G,FinSet). First, it is clear
that the vector spaces C

X×Y and C
X ⊗ C

Y are isomorphic in FinHilb
C

, since they have the
same dimension. Moreover, we have a natural isomorphism between the bifunctors

(FinSet × FinSet)op −→ FinHilb
C

:
(X1,X2) C

X1×X2

C
f1×f2

(Y1, Y2)

(f1,f2)

C
Y1×Y2

(18)

and

(FinSet × FinSet)op −→ FinHilb
C

:

(X1,X2) C
X1 ⊗ C

X2

C
f1 ⊗C

f2

(Y1, Y2)

(f1,f2)

C
Y1 ⊗ C

Y2

(19)
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in the sense that the diagram

C
X1×Y1

ϕX1,Y1

C
f1×f2

C
X1 ⊗ C

Y1

C
f1 ⊗C

f2

C
X2×Y2

ϕX2,Y2

C
X2 ⊗ C

Y2

(20)

commutes, where

ϕX,Y : C
X×Y → C

X ⊗ C
Y : χ(x,y) 	→ χx ⊗ χy (21)

is defined on basis elements, and in general by linear extension of this prescription. In-
deed, chasing an arbitrary basis element around the diagram, we obtain χ(x,y) 	→ χx ⊗χy 	→
χ

f −1
1 (x)

⊗ χ
f −1

2 (y)
when we go clockwise, and

χ(x,y) 	→ χ
f −1

1 (x)×f −1
2 (y)

	→
∑

a∈f −1
1 (x), b∈f −1

2 (y)

χa ⊗ χb = χ
f −1

1 (x)
⊗ χ

f −1
2 (y)

in the other direction.
Second, we obviously have an isomorphism β0 : C ∼= C

1, where 1 := {0} is a specified ter-
minal object in FinSet. Let β2 denote the natural isomorphism ϕ−1. For the triple (Q,β2, β0)

to qualify as a strong monoidal functor, one needs to check a bunch of coherence criteria.
Specifically, we have to verify commutativity of the following diagrams (where I have omit-
ted the indices of the natural transformations, for reasons of typographical clarity):

C
X ⊗ (CY ⊗ C

Z)
α′

C
X⊗β2

(CX ⊗ C
Y ) ⊗ C

Z

β2⊗C
Z

C
X ⊗ C

Y×Z

β2

C
X×Y ⊗ C

Z

β2

C
X×(Y×Z)

C
α−1

C
(X×Y)×Z

, (22)

C
X ⊗ C

ρ′

C
X⊗β0

C
X

Cρ−1

C
X ⊗ C

1

β2

C
X×1

,

C ⊗ C
X

λ′

β0⊗C
X

C
X

Cλ−1

C
1 ⊗ C

X

β2

C
1×X

(23)

with α,α′, λ and ρ the obvious natural isomorphisms. It is straightforward to chase basis
vectors around the diagrams, and to check that commutativity holds indeed.
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Third, we have to verify that the same coherence relations continue to hold in the cat-
egories Act(G,FinSet) and Rep(G,FinHilb

C
). Therefore, we have to check that all the

arrows involved are G-equivariant functions or intertwining linear operators, respectively.
First, however, we have to define an appropriate unitary representation of G on C

X ⊗ C
Y

and on C, given unitary representations UX of G on C
X and UY on C

Y . As for the first, it is
natural to take the unitary representation

g 	→ UX
g ⊗ UY

g . (24)

For the second, we take 1 	→ 1 for all g ∈ G. Continuing our argument,

g · α(x, (y, z)) = g · ((x, y), z)

= ((g · x,g · y), g · z)
= α(g · x, (g · y,g · z)) = α(g · (x, (y, z))),

g · λ(0, x) = g · x
= λ(0, g · x) = λ(g · (0, x))

and similarly for ρ, so these arrows lift to Act(G,FinSet). Next, at the level of FinHilb
C

we
obtain

(Ug ◦ α′)(χx ⊗ (χy ⊗ χz)) = ((UX
g ⊗ UY

g ) ⊗ UZ
g )((χx ⊗ χy) ⊗ χz)

= (χg·x ⊗ χg·y) ⊗ χg·z

= α′(χg·x ⊗ (χg·y ⊗ χg·z))

= (α′ ◦ (UX
g ⊗ (UY

g ⊗ UZ
g ))(χx ⊗ (χy ⊗ χz)),

(UX
g ◦ λ′)(1 ⊗ χx) = UX

g (χx)

= χg·x

= λ′(1 ⊗ χg·x)

= λ′((UC

g ⊗ UX
g )(1 ⊗ χx)),

(Vg ◦ β2)(χx ⊗ χy) = Vg(χ(x,y))

= χ(g·x,g·y)

= β2(χg·x ⊗ χg·y)

= β2((U
X
g ⊗ UY

g )(χx ⊗ χy)),

(U 1
g ◦ β0)(1) = U 1

g (χ0)

= χ0

= β0(1)

= β0(U
C

g (1))

= (β0 ◦ UC

g )(1)

and this proves our assertion. Summarizing, we have established
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Theorem 2 The strong monoidal functor

(Q,β2, β0) : (FinSet,×) −→ (FinHilb
C
,⊗) (25)

lifts to a strong monoidal functor

(QG,β2, β0) : (Act(G,FinSet),×) −→ (Rep(G,FinHilb
C
),⊗). (26)

From a physical perspective, these results point at the importance of the tensor product for
the description of compound quantum systems, at least in so far as they can be represented
as objects in the category FinHilb

C
. The parallel composition of two classical measurement

devices is described by the cartesian product of the descriptions of the individual devices,
and the composite quantum system by the tensor product of the elementary systems that can
be probed by the measurement devices individually.

Next, I propose to investigate the Hilbert space equivalent of the characterization of clas-
sical actions of a group G, in terms of the Eilenberg–Moore category associated with the
functor PG. Since the functor Q maps G×X to C

G×X ∼= C
G ⊗C

X , we expect that tensoring
with the group algebra C

G plays an important role in our setting.5 This algebra comes nat-
urally equipped with a convolution product, an operation that reflects the underlying group
structure. Specifically, given α,β ∈ C

G one defines the operation

α � β =
(∑

g∈G

α(g) χg

)
�

(∑

h∈G

β(h) χh

)
=

∑

g,h∈G

α(g)β(h)χgh (27)

and so

(α � β)(k) =
∑

gh=k

α(g)β(h) =
∑

g∈G

α(kg−1)β(g) =
∑

g∈G

α(g)β(g−1k). (28)

The unit for the convolution product is the element χe . Convolution is compatible with the
linear structure of C

G, and the reader can easily verify that � is an associative operation. In
addition, the group algebra comes naturally equipped with an involution, defined on gener-
ators as χg 	→ χg−1 , and in general by the assignment

α =
∑

g∈G

α(g)χg 	→ α† =
∑

g∈G

α(g)∗χg−1 . (29)

Incidentally, (α � β)† = β† � α†. Indeed, this follows from

(α � β)†(k−1) =
∑

g∈G

α(g)∗β(g−1k)∗

=
∑

g′∈G

β(g′−1)∗α(kg′)∗ = (β† � α†)(k−1).

For our purposes it is more than sufficient that the convolution product reflects the underly-
ing group structure, and turns C

G into an associative ∗-algebra with unit.

5Actually, the group algebra is usually taken as the space L1(G,μG), which becomes an involutive and
associative Banach algebra when equipped with �, but this is irrelevant for our purposes here.
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In some sense, the structure of the group algebra C
G allows us to “internalize” the group

G as a group-like object in the category FinHilb
C

. For, according to the perspective devel-
oped in this exposition, it is natural to consider the structure of the functor

TG : FinHilb
C

−→ FinHilb
C

:
V

f

C
G ⊗ V

C
G⊗f

W C
G ⊗ W

. (30)

First, observe that C
G behaves as a monoid in the category FinHilb

C
. Specifically, because

of the bilinearity of � : CG × CG → CG there exists a unique linear mapping �̂ : CG ⊗
C

G → C
G such that �̂ ◦ ⊗ = �, by the universal properties of ⊗. We then have to check

commutativity of the diagram

(CG ⊗ C
G) ⊗ C

G
�̂⊗C

G

α−1

C
G ⊗ C

G

�̂C
G ⊗ (CG ⊗ C

G)

CG⊗�̂

C
G ⊗ C

G

�̂
C

G

and it is trivial to verify this on basis elements. It is equally easy to verify the conditions
expressed in the two remaining diagrams

C ⊗ C
G

u⊗C
G

λ

C
G ⊗ C

G

�̂

C
G ⊗ C

C
G⊗u

ρ

C
G

C
G

C
G

,

where u is the linear mapping defined by the assignment 1 	→ χe . We deduce that the functor
(30) is part of a monad, explicitly given by the triple (TG,η,μ), where the natural transfor-
mations

η : 1FinHilbC
�⇒ TG, μ : T 2

G �⇒ TG (31)

are given by the assignments

ηV : V → C
G ⊗ V : ψ 	→ χe ⊗ ψ, (32)

μV : C
G ⊗ (CG ⊗ V ) → C

G ⊗ V : α ⊗ (β ⊗ ψ) 	→ (α � β) ⊗ ψ (33)
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on generators. More explicitly, to qualify as a monad, this triple has to satisfy the conditions

C
G ⊗ (CG ⊗ (CG ⊗ V ))

CG⊗μV

μ
CG⊗V

C
G ⊗ (CG ⊗ V )

μV

C
G ⊗ (CG ⊗ V )

μV

C
G ⊗ V

,

C
G ⊗ V

η
CG⊗V

C
G ⊗ (CG ⊗ V )

μV

C
G ⊗ V

C
G⊗ηV

C
G ⊗ V

.

The first diagram boils down to associativity of the convolution, and the second to the fact
that χe acts as an identity with respect to �.

In the next step, we construct the Eilenberg–Moore category EM(TG) of all TG-algebras,
associated with the monadic functor TG. It will then hardly come as a surprise that we have
the following

Theorem 3 Rep(G,FinHilb
C
) is a full subcategory of EM(TG).

Proof Given a unitary representation g 	→ UV
g of G on a finite-dimensional Hilbert space

V , we start by showing that the pair (V , ÛV ) forms a TG-algebra, where ÛV is defined on
generators as follows:

ÛV : C
G ⊗ V → V : χg ⊗ ψ 	→ UV

g (ψ)

and on arbitrary elements by linear extension. We have to check the conditions expressed in
the diagrams

C
G ⊗ (CG ⊗ V )

CG⊗ÛV

μV

C
G ⊗ V

ÛV

C
G ⊗ V

ÛV

V

,

V
ηV

C
G ⊗ V

ÛV

V

. (34)

Again, it is an easy matter to do so on basis elements. Second, let A : V → W be an in-
tertwining map. I assert that A can be seen as a morphism of the algebras (V , ÛV ) and
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(W, ÛW ). For we have to verify the condition

C
G ⊗ V

ÛV

C
G⊗A

V

A

C
G ⊗ W

ÛW

W

(35)

and again this is easy to do on generators. On the other hand, any linear transformation that
satisfies (35) is intertwining. Altogether, the embedding

Rep(G,FinHilb
C
) −→ EM(TG) :

(V ,UV )

A

(V, ÛV )

A

(W,UW) (W, ÛW )

(36)

satisfies all the necessary requirements. �

Conversely, an arbitrary TG-algebra (V ,U) is a pair consisting of a finite-dimensional
Hilbert space V and a (necessarily non-zero) linear mapping U : CG ⊗ V → V satisfying
the conditions (34). We can then define a collection of linear operators

Ug : V → V : ψ 	→ U(χg ⊗ ψ).

Expressing the defining conditions for a TG-algebra, we find

Ue(ψ) = U(χe ⊗ ψ)

= (U ◦ ηV )(ψ)

= idV (ψ) = ψ,

(Ug ◦ Uh)(ψ) = Ug(U(χh ⊗ ψ))

= U(χg ⊗ U(χh ⊗ ψ))

= (U ◦ (idCG ⊗ U))(χg ⊗ (χh ⊗ ψ))

= (U ◦ μV )(χg ⊗ (χh ⊗ ψ))

= U((χg � χh) ⊗ ψ)

= U(χgh ⊗ ψ) = Ugh(ψ).

We deduce that each Ug is invertible, with inverse Ug−1 . If we require in addition that ‖U‖ ≤
1, then it is easy to see that actually ‖U‖ = 1, and we have, for each g ∈ G and ψ ∈ V :

‖Ug(ψ)‖2 = ‖U(χg ⊗ ψ)‖ ≤ ‖χg ⊗ ψ‖2 = ‖ψ‖2.

Applying this inequality for Ug−1 , we then also have ‖ψ‖2 ≤ ‖Ug(ψ)‖2, and so ‖Ug‖ = 1 for
all g ∈ G, and we have obtained a unitary representation of G. Summarizing, if we restrict
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our attention to linear contractions, and employ the notation FinHilb(1)

C
) for the resulting

subcategory, then each object in EM(TG) yields an object in Rep(G,FinHilb
C
). This result

can be seen as yet another manifestation of the fact that it is the projective structure of Hilbert
space that is important, the linear structure arising because of the fundamental theorems of
projective geometry in the representation of the physically more fundamental underlying
projective geometries. Summarizing the exposition so far, we have established most of the

Theorem 4 Rep(G,FinHilb(1)

C
) and EM(TG) are isomorphic categories.

Proof Given a unitary representation (V ,UV ), we have

ÛV
g (ψ) = ÛV (χg ⊗ ψ) = UV

g (ψ).

Conversely, given a TG-algebra (V ,U), we have

Û (χg ⊗ ψ) = Ug(ψ) = U(χg ⊗ ψ),

from which our assertion follows. �

Thus, we have a complete characterization of the collection of unitary representations of
G in terms of the Eilenberg–Moore category associated with the monadic functor TG.

5 Action Extensions and Inducing Representations

Finally, I would like to add a few comments on some of the implications for the operations of
extending the action of a subgroup H to the action of a larger group G and the corresponding
inducing constructions for unitary representations. In the first case, the heart of the problem
is related to the properties of the contravariant functor

SubGrp
C
(G)op −→ CAT :

G Act(G,C)

RH
G

H

i

Act(H,C)

, (37)

where the domain consists of all subgroups of G that are also subobjects in C of the C-group
G, arrows corresponding with the inclusions, and where

RH
G : Act(G,C) −→ Act(H,C) (38)

is the obvious restriction of the action of G to an action of the subgroup H on the same
object. As befits a free construction, we are then concerned with the possible existence of a
left adjoint

F H
G : Act(H,C) −→ Act(G,C), (39)

so that we have a natural isomorphism

homAct(G,C)(F
H
G (A),B) ∼= homAct(H,C)(A,RH

G (B)). (40)
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This will always be the case for C = Set, as one can show explicitly by the appropriate
constructions. Specifically, for each H -set S one constructs a G-set G ×H S such that the
H -equivariant mapping

j : S → RH
G (G ×H S) : s 	→ [1, s] (41)

is universal from S to RH
G ; for more details, see Foulis & Wilce [5]. It follows from a standard

theorem of category theory ([9], Theorem IV.1.2) that this prescription on objects, S 	→
G ×H S, can be extended into a functor FH

G that is left adjoint to RH
G .

For unitary representations, one has to investigate the properties of a similar functor,
restricting a unitary representation of G to the subgroup H :

SubGrp(G)op −→ CAT :
G Rep(G,FinHilb

C
)

RH
G

H

i

Rep(H,FinHilb
C
)

. (42)

In this case, it turns out that one has to look for a right adjoint to RH
G , due to the contravari-

ance of the functor Q. Specifically, as a first step it makes sense to investigate the potential
universal properties of the object C

G×H S , equipped with the unitary representation specified
by QG, or any other suitable member of its isomorphism class in Rep(G,FinHilb

C
). The

G-equivariant canonical quotient q : G × S → G ×H S becomes a G-intertwining linear
transformation q∗ : C

G×H S → C
G×H , and it is easy to see that the functor Q maps surjec-

tions to injections. Therefore, C
G×H S is G-isomorphic to a linear subspace of C

G×S , and the
latter space is isomorphic to the Hilbert space V G, where V = CS = QH (S) comes equipped
with a unitary representation of the subgroup H . Indeed, this follows from the well-known
fact that

� : homSet(G × S,C) ∼= homSet(G,hom(S,C)) : ζ 	→ �ζ, (43)

where ((�ζ )(g))(s) = ζ(g, s). Transporting the unitary representation of G (given by the
extension of Q to Act(G,Set)) to this new vector space, which becomes a Hilbert space
when equipped with the scalar product

〈−,−〉 : V G × V G → C : (ϕ,ψ) 	→
∑

g∈G

〈ϕ(g),ψ(g)〉V , (44)

it turns out that C
G×H S can be seen as the linear subspace

V G:H := {ϕ ∈ V G | ϕ(gh) = V −1
h (ϕ(g)) for all g ∈ G,h ∈ H }, (45)

equipped with the unitary representation (g,ψ) 	→ Ugψ = ψ ◦ g−1; again, for more details,
I refer to Foulis & Wilce [5] and Mackey [8]. Under this form, the construction—the rep-
resentation induced by V —can be easily generalized to arbitrary unitary representations of
H on a space V , and not only the ones in the image of Q, and again it turns out that one
obtains a universal arrow

J : RH
G (V G:H ) → V (46)
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in the category Rep(H,FinHilb
C
), for each H -representation V . Here, J is the H -inter-

twining linear surjection that corresponds with the H -equivariant injection j .

W

T̂

V G:H

,

RH
G (W)

T

RH
G

(T̂ )

RH
G (V G:H )

J
V

. (47)

Thus, the inducing construction proves explicitly that a right adjoint IH
G for the restriction

functor RH
G exists, by applying the same theorem as before. In addition, the Frobenius reci-

procity theorem is an easy consequence of the uniqueness requirement, since the (natural)
bijection associated with the adjoint pair RH

G � IH
G

hom(RH
G W,V ) ∼= hom(W, IH

G V ) : T 	→ T̂ (48)

is clearly linear, hence the dimensions of both vector spaces, consisting of the appropriate
H -intertwining and G-intertwining operators respectively, are equal. Also, extension and
induction in stages is straightforward, due to the (essential) uniqueness and compositional
behaviour of adjoint functors. Specifically, if H1 ≤ H2 ≤ H3, then F

H1
H2

� R
H1
H2

and F
H2
H3

�
R

H2
H3

, and one also has F
H2
H3

◦ F
H1
H2

� R
H1
H2

◦ R
H2
H3

, and so there is a G-equivariant bijection

H3 ×H2 (H2 ×H1 S) ∼= H3 ×H1 S (49)

and similarly for IH
G . To paraphrase Mac Lane [9]: Who wants more?

6 Outlook

In this paper, I have investigated some of the structural issues that arise when one tries to
integrate group theoretical methods, reflecting the existence of symmetry constraints at the
level of the description of a physical system. The physically important groups—the Galilei
group and the Poincaré group among others—come with additional topological, measure-
theoretic and differential structure, and this requires a more sophisticated analysis. Also, the
operationally motivated structures that one obtains for the description of physical systems
lead, inter alia, to complete atomistic orthomodular lattices, with an underlying projective
geometry [11, 12]. Consequently, the mathematical representatives of both classical systems
and standard quantum systems become objects in the same category of such lattices and
appropriate morphisms, and so it becomes imperative to endow the resulting category with
an action of G. G-equivariant arrows in the underlying category from the subcategory of
classical property lattices obtain the physical meaning of G-covariant observables, relating
the properties of a classical device with those of the system under investigation. In other
words, the external functorial correspondence between classical descriptions and standard
quantum systems that was the subject of this paper becomes internalized in one and the
same category, from this perspective. Much remains to be done, and this is the subject of
future work.
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